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ameter also has an influence on frequency
stability of Faraday rotation (Fig. 5). The

combining of these two effects proved to
give excellent results experimentally. The

main advantage of this method lies in the

possibility of using easily accessible and low-

10SSpolystyrene instead of high permittivity

dielectrics, and in the fact that the ferrite
length has noeffect onthebroad-band per-

formance. Fig. 6 shows the experimental
results for Ferroxcube B5, obtained with a

3-inch-long sample of optimum diameter.
S. J. LEWANDOWSKI
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Equivalence of O and – 1 Space

Harmonics in Helical Antenna

Operation*

In considering the propagation of elec-

tromagnetic waves along helical conductors
using the Tape Helix approximation, it is

well knownl that the solution contains an
infinite number of space harmonics. The

phase constants of these harmonics are re-
lated by

where L30is the phase constant of the funda-
mental, P is the helical pitch and m is any
integer including zero. It has been shown by
Watkinsz that as far as axial propagation is

concerned, it is the — 1 space harmonic

which is responsible for the operation of

the helical antenna. If, however, propaga-

tion along the conductor is considered, then
the correct space harmonic to be considered

is the fundamental as used originally by
Sensiper.~ It is easy to show that both ap-

proaches lead to identical results, the proof
being as follows.

Let the phase shift between adjacent
turns of the helix be denoted by o with the
subscript O or — 1; depending on whether the
fundamental or the — 1 space harmonic is

being considered, Then

00 = g.2T

where L is the length of 1 helical turn and XO
is the fundamental wavelength. Denoting

the axial velocity of the fundamental by VO,
the conductor phase velocity for the funda-
mental is uO/sin +, where@ is the helical pitch
angle, so that

* Received by the PGMTT, October 20, 1959.
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where o_I is the axial phase velocity of the
– 1 space harmonic. This is related to the
fundamental axial phase velocity uo by

v–l ha—.
2J0 (30a – cot ~

so that o–I eventually simplifies to

which is identical with the expression for 6’o

except for a difference of 2rr which is not

significant.
Therefore, it is equally valid to consider

either the fundamental or the — 1 space
harmonic, the first relating to propagation

along the conductor, and the second to
propagation axially.

As these phase velocities apply to an in-
finite helix, it is not possible to use them di-
rectly for the finite antenna, since it has

been found by Kraus’ that the phase veloc-
ity is also a function of the length of the an-

tenna. Nevertheless, it is known5 that the

solution for the infinite case may be used as
a means of estimating the bandwidth of the
antenna for any pitch angle ~, and it is now

shown that both axial and conductor propa-
gation give identical results.
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Application of Perturbation Theory

to the Calculation of o-~ Character-

istics for Periodic Structures*

The effect of small periodic changes in
the physical dimensions of closed periodic
structures can be investigated using the per-
turbation theory developed by Mttllerl and
later by Slater. z From this theory the frac-

* Received by the PGMTT, November 2, 1959.
This work was supported in part by the U. S. Army
Signal Engrg. Labs., Fort Monmouth, N. J., under
Contract DA 36-039 SC-78254.

I J. Muller, “Untersuchung uber elektromag-
~et~~he hohh-aume. ” Hochfreque wz. und Eiektroak.,
VO1. 54, P. 157: November. 1939.

z J. C. Slater, “Microwave Electronics, ” D. Van
Nostrand Co.. Inc., Princeton, N. J., p. SO; 1950.

tional change in the natural frequency, a,
of a resonant cavity caused by the introduc-

tion into the cavity of a small conducting
object of volume, ~, is given by

s(/.LOH2-- eJCiY)dV

&/w =;-’ (1)

J
qiizd V

0

The integration in the numerator extends
only over the volume of the perturbing ob-
ject, whereas that in the denominator ex-
tends over the entire volume of the cavity,

and E and H are the amplitudes of the elec-
tric and magnetic fields.

A commonly used technique for deter-

mining the O@ characteristic for a closed
periodic structure consists of constructing

a, resonator from an appropriately chosen

length of the structure and determining the

natural frequencies of the resonator which

correspond to the field conf~gurations of in-

terested If the fields within the unperturbed
structure are known, ( 1) may be used to
compute the effect of small changes in the
physical dimensions on these natural fre-
quencies. This technique has been used by
Vanhuyse4 in the construction of a linear
accelerator using a disk-loaded circular

waveguide.
If the perturbations are periodic and if

the period of the perturbation is an integral
multiple of the fundamental period of the

unperturbed structure, the resonant cavity
technique may be used to determine the

@ characteristic for the perturbed struc-
ture. For this case (1) may be used to relate

the @ characteristic fcm the perturbed
structure to that for the unperturbed struc-
ture.

As an illustration, let the initial unper-

turbed structure be a uniform disk-loaded
circular waveguide of radius b, and let the

perturbed structure comprise cavities alter-
nately of radius b– and b+ as shown in Fig. 1.

Fig. l—Uniform and perturbed disk-loaded
circular wavegui ales.

If the average volume per cell is unchanged

by the perturbation and if b+ –b<<b, it is
found that the a-~ characteristic for the

perturbed structure coincides with that for
the uniform structure except when the phase

shift per section in the unperturbed struc-
ture is 7r/2. For this situation (which corre-

sponds to a rr phase shift per section in the
perturbed structure ), two frequencies are
found, indicating the presence of a stop

band. The width of the stop band is given
by the difference between these two fre-

quencies.

s B. Epsztein and G. Mourier, “ Definition, m:sure
et caracths des vitesses de pha,~e clans les systernes
& structure p~riodiquen Amt. Radio$lectricitti, vol. 10,
p. 64; January, 1955.

4 V. J. Vanhuyse, “On the proper frequencies of
terminated corrugated waveguides wilh slightly dif-
ferent diameters, ” Physics, vol. 21, p. 603; July, 1955.
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Although calculations of this type do not
predict the proper behavior for the u-/3

characteristic near stopbands resulting from
a periodic perturbation, they do predict the
occurrence and width of such stop bands.
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Ice as a Bending Medium for Wave-

guide and Tubing*

Bending waveguide and metal tubing is

very often a difficult and time-consuming
task. Low melting temperature alloys are
at times difficult to remove from waveguide

and tubing. The piece to be bent may be

filled with water which is then frozen by dry

ice, liquid nitrogen, or by a deep freeze. In

some applications where the piece to be bent

is integral with a larger system, a block of
dry ice may be held against it to freeze only
the portion of water around the section to
be bent. The use of these low temperatures
causes not only the water to freeze into
quite small crystals (which act like a sand
packing), but also prevents the ice from

melting because of the pressure of bending.
Several tests were performed on thin

walled aluminum tubing and P-band brass

waveguide. It was found that in comparison
to low melting alloys the bends were iden-

tical within the statistical variation of sam-
ples. The time required for the operation

was considerably shorter.
FRANKLIN S. COALE

Microwave Engrg. Labs., Inc.
Palo Alto, Calif.
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On Higher-Order Hybrid Modes of
Dielectric Cylinders*

In the course of investigations into the
properties of various surface wave struc-

tures, 1 it became necessary to investigate
hybrid modes on dielectric cylinders for
modes of order n, where n >1. The case %= 1
has received extensive treatment in the

literature [I]- [6].
The radial dependence of the axial fields

is as .Tn [@(P/a)] inside the dielectric cylinder
and Km [g(p/a) ] outside, where P is the radial

* Received by the PGMTT, November 5, 1959.
This note is based on studies undertaken pursuant to
Contract AF 19(604)3879 with the Air Force Cam.
bridge Research Center.

1 Report in preparation.’

cylindrical coordinate, a is the radius of the
cylinder, @ and q are radial eigenvalues, and

n is the rank of the mode.
The requirement of continuity of the

fields at the boundary leads, in the usual
manner, to the characteristic equation in-
volving Bessel functions and their deriva-
tives. This was first given by Schelkunoff
[4]. The derivatives of Bessel functions may

be eliminated from this equation by the use
of identities such as given by Watson [8], to
yield the simple form

(J+ + K+) (,J- – K-)

+ (J-– K-) (J++ K+) = o, (1)

where

~_ = J.-1(P) J.+,(P)

p~.(p) ‘
J+ = ~Jzz ;

Kn-,(q) K+ = K.+,(q)K- =___ —. .
qKn(q) ‘ qKn(q) ‘

and e is permittivity of dielectric cylinder
relative to surrounding medium.

The cutoff values of the parameter p
are of great interest; they may be obtained

by letting q-O in the characteristic equa-

tion. To keep the terms finite requires that

the equation be multiplied by an appropri-
ate power of q before the limit is taken. If it
is assumed that ~– is finite at cutoff, it is
sufficient to multiply the equation by qz
to obtain a solution for the cutoff values of
p; this was given by %helkunoff [4]. How-
ever, if this assumption is not made, an
additional solution may be determined. This

will be outlined below.

Multiplying the characteristic equation
by [qp~.(p) ]2 gives

(0’.ln+, + q2K+PJC) (eJn-, – jJnK-)

+ (Jn-, – pJ.K-) (Gq’J.+, + g2K+PJ.) = O. (2)

Taking the limit as g+O and noting that

K– ~ —~
2(?Z – 1)

and qzK++2n one obtains

(2n pJ. (c + l)Jn_l - &
)

= o. (3)

The solutions are, for n >1,

.Tn(p) = o, p#o. (5)

Eq. 4 is given by Schelkunoff [4]. The
very significant exclusion of the p = O solu-
tion of (5) as a cutoff condition is based on
the fact that for q-O and @-+0, (1) be-
comes, since

J-~?,
1

J+ ~ ___ ,

P’ 2(Z + 1)

(

1
.—

Z%<+T)+;) (3–27. – 1) )

2% 1

+ (F– 2(.–1) )(
~+~ + ~) =0. (6)

When the finite terms are neglected in com-
parison with the infinite terms, it is seen
that this is not satisfied at q = O, @= O for
any n >1. However, the @= g = O solution,
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i.e., the condition for “no cutoff, ” is valid for

?2=1 [1].
The asymptotes for the p–q curves are

of interest. For g+ ~ the characteristic
equation becomes simply 2EJ–J+ = O, with
solutions at Jn–l(p) = O and J~+l(p) = O. It
will be seen that the first of these is asso-
ciated with the modes satisfying the first
or Schelkunoff cutoff condition, the second

with the alternate cutoff condition given
here in (5).

Because of the oscillatory character of

J.(p), the characteristic equation is satis-

fied by an infinite set of values of P for any

given q, in particular also for g= O. These

sets of p’s span an infinite set of modes which
may propagate along the dielectric rod. It
is now seen that the existence of the alter-
nate cutoff condition indicates the existence

of an infinite set of modes that interlace the
modes that satisfy the cutoff condition of
(4). This and other salient characteristics

of the doubly infinite set of modes are pre-
sented qualitatively in Fig. 1, with the n = 1

case treated by Beam [1] included for com-
parison in Fig. 2. The curve shapes are based

upon the detailed numerical solution of (2)

obtained with an IBM 650 computer for

n =2, 6 for a wide range of e.
The significance of Fig. 1 may be sum-

marized as follows.
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Fig. l—Loci of solutions of the characteristic eqna-
tion (l) forn>l.
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Fig. 2—Curves of p and Q for u =1.


