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ameter also has an influence on frequency
stability of Faraday rotation (Fig. 5). The
combining of these two effects proved to
give excellent results experimentally. The
main advantage of this method lies in the
possibility of using easily accessible and low-
loss polystyrene instead of high permittivity
dielectrics, and in the fact that the ferrite
length has no effect on the broad-band per-
formance. Fig. 6 shows the experimental
results for Ferroxcube BS5, obtained with a
3-inch-long sample of optimum diameter.
S. J. LEWANDOWSKI
J. KonoPEa
Warsaw Technical University
Dept. of Ultrashort Wave Techniques
Warsaw, Poland

Equivalence of 0 and —1 Space
Harmonics in Helical Antenna
Operation*

In considering the propagation of elec-
tromagnetic waves along helical conductors
using the Tape Helix approximation, it is
well known' that the solution contains an
infinite number of space harmonics. The
phase constants of these harmonics are re-
lated by

2rm

6m=60+"—‘—,
b4

where o is the phase constant of the funda-
mental, p is the helical pitch and m is any
integer including zero. It has been shown by
Watkins? that as far as axial propagation is
concerned, it is the —1 space harmonic
which is responsible for the operation of
the helical antenna. If, however, propaga-
tion along the conductor is considered, then
the correct space harmonic to be considered
is the fundamental as used originally by
Sensiper.? It is easy to show that both ap-
proaches lead to identical results, the proof
being as follows.

Let the phase shift between adjacent
turns of the helix be denoted by ¢ with the
subscript 0 or —1; depending on whether the
fundamental or the —1 space harmonic is
being considered. Then

0o = —2r
Ao

where L is the length of 1 helical turn and A,
is the fundamental wavelength. Denoting
the axial velocity of the fundamental by v,
the conductor phase velocity for the funda-
mental is vg/sin ¥, where  is the helical pitch
angle, so that
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where v_y is the axial phase velocity of the
—1 space harmonic. This is related to the
fundamental axial phase velocity z; by

%0 Bea — coty
so that 6_; eventually simplifies to

0_y = 2—7r£]: — 2,
Yo
which is identical with the expression for 6o
except for a difference of 2« which is not
significant.

Therefore, it is equally valid to consider
either the fundamental or the —1 space
harmonic, the first relating to propagation
along the conductor, and the second to
propagation axially.

As these phase velocities apply to an in-
finite helix, it is not possible to use them di-
rectly for the finite antenna, since it has
been found by Kraus? that the phase veloc-
ity is also a function of the length of the an-
tenna. Nevertheless, it is known® that the
solution for the infinite case may be used as
a means of estimating the bandwidth of the
antenna for any pitch angle ¢, and it is now
shown that both axial and conductor propa-
gation give identical results.
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Application of Perturbation Theory
to the Calculation of »-8 Character-
istics for Periodic Structures*

The effect of small periodic changes in
the physical dimensions of closed periodic
structures can be investigated using the per-
turbation theory developed by Miiller! and
later by Slater.? From this theory the frac-
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tional change in the natural frequency, «,
of a resonant cavity caused by the introduc-
tion into the cavity of a small conducting
object of volume, 7, is given by

1 f (woH? — «E)dV
Swfw = ) T <

f l2dV

The integration in the numerator extends
only over the volume of the perturbing ob-
ject, whereas that in the denominator ex-
tends over the entire volume of the cavity,
and E and H are the amplitudes of the elec-
tric and magnetic fields.

A commonly used technique for deter-
mining the -8 characteristic for a closed
periodic structure consists of constructing
a, resonator from an appropriately chosen
length of the structure and determining the
natural frequencies of the resonator which
correspond to the field configurations of in-
terest.? If the fields within the unperturbed
structure are known, (1) may be used to
compute the effect of small changes in the
physical dimensions on these natural fre-
quencies. This technique has been used by
Vanhuyset in the construction of a linear
accelerator using a disk-loaded circular
waveguide.

If the perturbations are periodic and if
the period of the perturbation is an integral
multiple of the fundamental period of the
unperturbed structure, the resonant cavity
technique may be used to determine the
w-B characteristic for the perturbed struc-
ture. For this case (1) may be used to relate
the w-8 characteristic for the perturbed
structure to that for the unperturbed struc-
ture.

As an illustration, let the initial unper-
turbed structure be a uniform disk-loaded
circular waveguide of radius b, and let the
perturbed structure comprise cavities alter-
nately of radius _ and b as shown in Fig. 1.

Fig. 1—Uniform and pertutbed disk-loaded
circular waveguides.

If the average volume per cell is unchanged
by the perturbation and if &, —b<b, it is
found that the w-8 characteristic for the
perturbed structure coincides with that for
the uniform structure except when the phase
shift per section in the unperturbed struc-
ture is /2. For this situation (which corre-
sponds to a = phase shift per section in the
perturbed structure), two frequencies are
found, indicating the presence of a stop
band. The width of the stop band is given
by the difference between these two [re-
quencies.

2 B, Epsstein and G. Mourier, “Définition, mesure
et caractéres des vitesses de phase dans les systémes
4 structure périodique” Anw. Radioéleciricité, vol. 10,
p. 64; January, 1955.

4V, J. Vanhuyse, “On the proper frequencies of
terminated corrugated waveguides with slightly dif-
ferent diameters,” Physica, vol. 21, p. 603; July, 1955.



252

Although calculations of this type do not
predict the proper behavior for the o-8
characteristic near stopbands resulting from
a periodic perturbation, they do predict the
occurrence and width of such stop bands.

Murray D, Sirkis
Microwave Electronics Lab.
Dept. of Electrical Engrg.
Rutgers the State University
New Brunswick, N. J.

Ice as a Bending Medium for Wave-
guide and Tubing*

Bending waveguide and metal tubing is
very often a difficult and time-consuming
task. Low melting temperature alloys are
at times difficult to remove from waveguide
and tubing. The piece to be bent may be
filled with water which is then frozen by dry
ice, liquid nitrogen, or by a deep freeze. In
some applications where the piece to be bent
is integral with a larger system, a block of
dry ice may be held against it to freeze only
the portion of water around the section to
be bent. The use of these low temperatures
causes not only the water to freeze into
quite small crystals (which act like a sand
packing), but also prevents the ice from
melting because of the pressure of bending.

Several tests were performed on thin
walled aluminum tubing and P-band brass
waveguide. It was found that in comparison
to low melting alloys the bends were iden-
tical within the statistical variation of sam-
ples. The time required for the operation
was considerably shorter.

FrANKLIN S. COALE |

Microwave Engrg. Labs., Inc.
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* Received by the PGMTT, November 2, 1959.

On Higher-Order Hybrid Modes of
Dielectric Cylinders*

In the course of investigations into the
properties of various surface wave struc-
tures,! it became necessary to investigate
hybrid modes on dielectric cylinders for
modes of order #, where n>1, The case n=1
has received extensive treatment in the
literature [1]~[6]

The radial dependence of the axial fields
isas J, [p(p/a)] inside the dielectric cylinder
and K,|g(p/a)] outside, where p is the radial
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cylindrical coordinate, a is the radius of the
cylinder, p and ¢ are radial eigenvalues, and
# is the rank of the mode.

The requirement of continuity of the
fields at the boundary leads, in the usual
manner, to the characteristic equation in-
volving Bessel functions and their deriva-
tives. This was first given by Schelkunoff
[4]. The derivatives of Bessel functions may
be eliminated from this equation by the use
of identities such as given by Watson [8], to
yield the simple form

(J* + K™ — K7)

+ "= K)JTHEN =0, (1)
where
Jn_l(P) b -ﬁﬂ@
T ) 27a(0)
KMI(Q) r Kn+1(_g_) i
T K@ 9Kn(g)’

and e is permittivity of dielectric cylinder
relative to surrounding medium.

The cutoff values of the parameter p
are of great interest; they may be obtained
by letting ¢—0 in the characteristic equa-
tion. To keep the terms finite requires that
the equation be multiplied by an appropri-
ate power of ¢ before the limit is taken. If it
is assumed that J~ is finite at cutoff, it is
sufficient to multiply the equation by g¢?
to obtain a solution for the cutoff values of
p; this was given by Schelkunoff [4]. How-
ever, if this assumption is not made, an
additional solution may be determined. This
will be outlined below.

Multiplying the characteristic equation

by [gpTu(p)]? gives

(s + ‘.72K+an) (eJn1 — pJK7)

+ (Vo1 — pJoK N Tns + @K pJ0) = 0. (2)
Taking the limit as ¢—0 and noting that

- 1
2n — 1)
and ¢g?K+—2# one obtains
T
2 pTs ((e )y — 2 ) 0. @)
n—1
The solutions are, for n>1,
Tni(P) 1
e .. 4
2T n(2) w— D+ 1) @)
Ju(p) =0, p =0, (5)

Eq. 4 is given by Schelkunoff [4]. The
very significant exclusion of the p=0 solu-
tion of (3) as a cutoff condition is based on
the fact that for ¢—0 and p—0, (1) be-
comes, since

Jo—— Jr—

” 20+ 1)

2(n + 1) ¢ ) <2m 2(n — 1))

+(j§'2(n 1))(2(n+1)+2ﬂ =0 ©®

When the finite terms are neglected in com-
parison with the infinite terms, it is seen
that this is not satisfied at ¢=0, =0 for
any #>1. However, the p=¢=0 solution,
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i.e., the condition for “no cutoff,” is valid for
n=1 [1].

The asymptotes for the p—g curves are
of interest. For ¢g— <« the characteristic
equation becomes simply 2¢J-J* =0, with
solutions at Jr_1(p)=0 and Jnu(p)=0. It
will be seen that the first of these is asso-
ciated with the modes satisfying the first
or Schelkunoff cutoff condition, the second
with the alternate cutoff condition given
here in (5).

Because of the oscillatory character of
Ju{p), the characteristic equation is satis-
fied by an infinite set of values of p for any
given ¢, in particular also for g=0. These
sets of p's span an infinite set of modes which
may propagate along the dielectric rod. It
is now seen that the existence of the alter-
nate cutoff condition indicates the existence
of an infinite set of modes that interlace the
modes that satisly the cutoff condition of
(4). This and other salient characteristics
of the doubly infinite set of modes are pre-
sented qualitatively in Fig. 1, with the n=1
case treated by Beam [1] included for com-
parison in Fig. 2. The curve shapes are based
upon the detailed numerical solution of (2)
obtained with an IBM 650 computer for
n=2, 6 for a wide range of e.

The significance of Fig. 1 may be sum-
marized as follows.
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Fig. 1—Loci of solutions of the characteristic equa-
tion (1) for n >1.
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Fig. 2—Curves of p and ¢ for n =1.



